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Abstract—Massive deployment of autonomous vehicles, un-
manned aerial vehicles, and robots, brings in a new technology
challenge to establish ultra-low end-to-end latency mobile
networking to enable holistic computing mechanisms. With
the aid of open-loop wireless communication and proactive
network association in vehicle-centric heterogeneous network
architecture, anticipatory mobility management relying on
inference and learning from big vehicular data plays a key role
to facilitate such a new technological paradigm. Anticipatory
mobility management aims to predict APs to be connected in
the next time instant and in a real-time manner, such that
ultra-low latency downlink open-loop communication can be
realized with proactive network association. In this paper,
we successfully respond this technology challenge using big
data analytics with location-based learning and inference tech-
niques, to achieve satisfactory performance of predicting APs.
Real traces of big vehicular movement data have been used
to verify that the proposed prediction methods are effective
for the purpose of anticipatory mobility management and thus
ultra-low latency mobile networking.

Index Terms—big data, data analytics, mobile networks, ultra-
low latency, fog computing, vehicular networks, autonomous
vehicles, machine learning, virtual networks, 5G

1. INTRODUCTION

Fifth generation (5G) mobile communications will come
into our lifes in next few years, with wide deployment
of more advanced mobile broadband communication and
diverse Internet of Things (IoT) applications [1]. Another
major goal of 5G, low latency is also expected to be
reduced from hundreds of milliseconds in 4G. In light of
massive deployment of autonomous vehicles (AVs) in the
next decade, heterogeneous cellular network structure to
support the emerging need of critical control, command,
and management are very much wanted in the near future,
as an emerging application scenario of IoT [2]. However,
ultra-low latency, in the order of 1 msec, is required for
such critical messages in the massive operation of AVs
[3], which is much beyond the low latency in 5G. Due to

high mobility of AVs, such requirements suggest even more
challenging technology than Tactile Internet [4]. Therefore,
achieving ultra-low latency mobile networking requires a
new technological paradigm.

Leveraging edge/fog computing to reduce end-to-end
latency for the purpose of control and management suggests
achieving low-latency by a heterogeneous network architec-
ture [5], [6] with a two-tier structure. Recent LTE based
vehicular radio access targets at integrating 3GPP vehicle-
to-everything (V2X) connection, licensed-assisted access
(LAA) and device-to-device (D2D) proximity services to
address the particular issues of sidelink shared channel
collision and resource uncertainty on uplink, downlink and
sidelink. Subsequent IEEE 802.11ax based vehicular di-
rect radio access emphasizes providing a quality-of-service
(QoS) guaranteed sidelink access scheme, to enable direct
vehicle data exchange, which paves the way to deploy
V2X in unlicensed spectrum [7]. In the meantime, open-
loop communication [8], [9] as a technology for physical
transmission can also significantly reduce latency as long as
appropriate error control is in place [10]. The final piece of
technology to achieve ultra-low latency networking is the
proactive network association and corresponding anticipa-
tory mobility management (AMM) at the edge of network
infrastructure, such that mobile stations like a vehicle can
communicate with the fog computing network elements at
the minimal latency without the need of complicated han-
dover procedure. Following the research efforts by [11] and
[12], predictive capability emerges as a very much needed
technology in the architecture of Section 2 of this paper.

Therefore, AMM realized by prediction of APs in use
for each vehicle from big vehicular datasets emerges as a
technologically open problem. In this paper, prediction of
access points to ultra-low latency mobile networks based
on big vehicular data analytics will be investigated, under
the criterion and constraint of near real-time computation to
differ from the scenarios of most machine learning and data
analytics. Our proposed prediction completes the network
function design of ultra-low latency mobile networks and
paves the avenue to autonomous vehicles, unmanned aerial
vehicles, and robotics. This might be the first in-depth
exploration in wireless networks that ”require” big data anal-
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ysis and machine learning [13] to fulfill the technological
innovation in wireless and vehicular networks.

2. ARCHITECTURE OF COMPUTING AND
NETWORKING TO ACHIEVE ULTRA-LOW
LATENCY

Traditionally, centralized managed wireless network al-
located physical channels (radio resource units) to each mo-
bile node (a vehicle in our case), and a handover mechanism
is required when the mobile node connects from one AP (or
base station) to another. Each AP or base station (BS) needs
to serve multiple mobile stations (MSs), which relies on
fast adapting and complicated closed loop control signaling
between BS/AP and each MS, such as power control in
3G cellular and channel estimation in 4G cellular systems.
Although various techniques can improve the latency such
as tunneling protocols, a new technology paradigm becomes
a must to dramatically reduce end-to-end networking latency
in the tens of milliseconds for connected vehicles and further
down to milliseconds for autonomous vehicles [3].

A break through idea is to treat each vehicle as a virtual
cell, that is, there is only one mobile station in each virtual
cell and multiple APs cooperatively serve this mobile node.
Each AP designates a network/radio slice to this virtual
cell, and serves multiple virtual cells at the same time.
Consequently, each AP and the subsequent Anchor Node
(AN) must run network virtualization in software defined
networking (SDN) to facilitate the idea. To realize ultra-low
latency in each radio transmission, proactive network asso-
ciation and open loop communication have to be adopted.
The scenario is depicted in Figure 1. Due to proactive net-
work association and open-loop communication, real-time
and centralized mobility management to precisely determine
APs to serve virtual cell of high mobility in next moment
is not available. In other words, how can anchor nodes and
fog/edge networks determine, in the next time instant, which
APs will serve a virtual cell in the downlink?

Therefore, the success of ultra-low latency networking
must rely on the technology that the AN is capable of
facilitating the AMM to predict likely and appropriate APs
for each mobile node to proactively connect in next time
instant, particularly for ultra-low latency downlink commu-
nication. This is a fundamentally new technology challenge
and machine learning on big vehicular data appears an
attractive approach. Though applying machine learning to
enhance the performance of wireless networks has attracted
recent research interest [13], it might be the very first
effort to develop wireless networking relying on machine
learning and big data analysis. In this paper, we focus on
the AMM technology by proper prediction of APs connected
by proactive network association, and focus on big data
analytics with considering AN governing APs application
scenario only. In an unlikely but possible scenario that no
AP is predicted to cover, the networking falls back to high
power and longer latency cellular base station(s).

Figure 1. Radio slicing and network slicing to serve virtual cells (i.e.
vehicles) to achieve ultra-low latency networking. The orange vehicle is
the center of the virtual cell and communicating with three APs. To mini-
mize networking latency, proactive network association has been adopted,
which allows the virtual cell to select proper APs (i.e. network slice) to
access and to proceed uplink transmission, implemented by cooperative
communication like coordinated multiple-point (CoMP) transmission and
reception, and are realized as open-loop communication without feedback
acknowledgement, via selected radio slice. In the downlink, cooperative
communication similar to CoMP proceeds, while each AP allocates an
appropriate radio slice to the virtual cell. An anchor node is under the in-
struction of edge/fog computing and sends packets to those APs associated
with the virtual cell, again by open-loop communication.

3. PREDICTION OF ACCESS POINTS VIA
DATA ANALYTICS IN FOG

AMM in the uplink communication is straightforward
since a vehicle just connects to APs in range via proac-
tive network association. However, for ultra-low latency
packets in the downlink, AMM must predict APs to be
connected by the vehicle in next time instant. Both uplink
and downlink require multi-path error control as [14]. The
AMM consists of prediction by machine learning [13] by
the anchor node in the fog, and falling back mechanism
to high power node(s) in the heterogeneous network if no
AP is successfully predicted. The extremely simple AMM
operation except challenging prediction warrantees ultra-low
latency mobile networking. [12] demonstrates the successful
accomplishment of ultra-low latency by assuming AMM. In
the following, we explore the design of AMM, with focus
on the prediction from big data analysis.

3.1. Prediction Using Fog Computing/Networking

To facilitate ultra-low latency mobile networking em-
powered by proactive network association and open-loop
communication, we adopt fog computing at the edge of
network and this fog networking to form a heterogeneous
network structure with cellular network. An AN in the fog to
govern a number of APs for the purpose of the short-range
communication accompanies the fog computing facility that
analyzes the data which may include the map, recently asso-
ciated APs, big historical data of AP association patterns, or
side information regarding global moving patterns such as
knowledge of source-destination, localization, etc., to predict
APs for a virtual cell to associate at next time instant.



3.2. AP Deployment and Association

The ideal deployment of APs shall be along the roadside
as a sort of roadside units (RSUs) in traditional vehicular
networks. However, for the purpose of applying heteroge-
neous cellular networks for ultra-low latency mobile net-
working, we practically and economically assume that the
APs have multi-purpose roles in networking, say wireless
broadband, smart city, and other IoT applications. Therefore,
APs may be deployed in an area other than roadside. The
coverage of an AP is similar to micro base stations or WiFi
such that (quasi) real-time computing is possible. We further
assume the APs are randomly deployed, which might not
perfectly match the reality but provides the worst-case sce-
nario for wireless networking. More precisely, the APs are
deployed as a random geometric graph (RGG) with density
λAP per km2 in this paper, while realistic deployment can
provide a better networking scenario. Please note that RGG
deployment implies the non-trivial possibility of no coverage
for a virtual cell under reasonable density of APs, which
suggests worse performance than engineering practice in the
Section 5 numerical evaluation (λAP=69.44/km2).

Each virtual cell can proactively associate to K APs. Of
course, for K the larger the better, but is limited by hardware
and software capability to the value of Kmax. Here, we pay
attention to the case Kmax = 3 in this paper. This means,
for a virtual cell (i.e. a vehicle) that

• It associates with Kmax APs of the strongest SINR
(or other signaling to indicate suitability) if more
than Kmax APs are in radio range.

• It associates with K APs, if K ≤ Kmax APs are in
radio range.

For the initial research in this problem, a linearly de-
cayed SINR that covers a circular area of diameter, say
200m, is considered, ignoring issues such as power fading
and interference temporally. Accordingly, for multiple APs
covering a specific location, the connecting priority would
be inversely proportional to the distance in between directly.

3.3. Representation of Knowledge

The prediction of associated APs is actually a problem of
inference on heterogeneous data [15], [16]. A very different
aspect is the representation of APs as the target of inference.
Suppose each AP has an ID. Given the rule of association,
we could obtain time series representation by defining AP
association vector as

X(t) = [X(1)(t)X(2)(t)...X(d)(t)] ∈ {0, 1}d

X(i)(t) =

{
1, if the ith AP is connected
0, if the ith AP is not connected

(1)

where d is the number of APs considered in learning and
inference. For an example if d = 16 and time is indexed by
positive integers, an association vector looks like

tn X(tn)
n = 1, 2, ... [0, 0, 0, 0, 1, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0]

(2)

3.4. Problem Formation of Prediction on APs

After defining AP association and the representation of
AP association vector, we are able to define the prediction
of associated APs for a specific vehicle.

Problem. Considering one single vehicle driving on roads,
given a series of time t1, ..., tn and the corresponding AP
association vector X(t1), ..., X(tn) of the vehicle, predict
X(tn+1) for tn+1 > tn.

While the ultimate goal is to provide a perfect scheduling
for the overall association between APs and vehicles, a sim-
pler problem with one vehicle only is considered here such
that there would be no queueing or serving capacity issue
in connection to APs. Further more, as initial exploration of
such prediction by machine learning techniques to support
ultra-low latency networking, we restrict ourselves to the
smallest information set containing the historical association
vectors only, for there is no guaranteed access to other
informative messages, due to the privacy concern.

4. PREDICTIVE METHODOLOGY

Although it appears that many machine learning tech-
niques [13], [17], [18] are applicable to this scenario, there
exists some serious issues that limits these well known
techniques. Firstly, prediction of suitable APs from one time
instant to the next must be executed in almost real-time.
For example, training recurrent neural networks appears
fitting the prediction problem but our experiment shows
unsatisfactory performance due to this real-time concern
[19]. Consequently, in this paper, we only consider machine
learning techniques that can be executed near real-time by
proper computing facilities. Regression or adaptive filtering
may fit this constraint [20], while popular deep learning
[21] might better fit cloud computing to assist. Secondly,
we are not simply predicting the association vector, but
”when” will it be ”what state.” Since the connecting status is
based on the location of the vehicle, different time duration
implies different mobile communication range, even with
similar trajectory and speeding, and predicting the associ-
ation vector only with dropping the timing information is
thus unsuitable. Thirdly, the capability of learning from a
batch of data means the existence of a fixed pattern, in
other words, the process should be stationary. As what gives
the association vector is the location while instantaneous
GPS information of which can not be obtained by fog
computing, its underlying mechanism is affected by multiple
exogenous factors such as the traffic lights, the power of
the vehicle, the time being rush or off-peak, etc. Without
consideration of these factors, the distribution of the location
is apparently non-stationary, not to mention the depended
association vector. Consequently, AP prediction is not as
straightforward as it appears, and deliberate considerations
about predicting both ”when” and ”what state” under non-
stationary environment in a real-time manner is thus needed.

As the status of the association vector is uniquely de-
termined by the location of the vehicle according to (1),



Figure 2. Illustration of the hidden Markov process that generates the
association vectors. The Θ’s denote the unobserved locations. The asso-
ciation vectors observed only depend on the corresponding hidden Θ’s,
according to the connecting rules, and a Markov property of unknown
order exists in the series of Θ. For the order being 3, for example,
Y (tn) = [Θ(tn)Θ(tn−1)Θ(tn−2)Θ(tn−3)] together with X’s form a
simple hidden Markov chain.

the series of locations together with the corresponding as-
sociation vectors actually form a hidden Markov process
[18] but of unknown order of time dependence, as shown in
Figure 2, due to the conditional independence property of
the association vector given the location. From this view-
point, we take inferring and predicting the latent location
Θ as the problem, and learning the non-stationary transition
probability between locations is thus needed.

In the problem of tracking, Bayes filtering [28], [29]
gives the optimal solution theoretically, provided that the
hidden process is 1st order Markovian. Though the order
of temporal dependence in between is generally high, a
modified representation could suggest the 1st order Markov
process as reasonable. As a result, we adopted the concept of
Bayes filter for solving the problem, which is also possible
to support real-time inference.

4.1. Recursive Bayesian Estimation

Probabilistically, what we want to learn is

PXn+1|X1:n
(xn+1|x1:n) (3)

where Xi, Xi:j are shorthand notations for X(ti) and
[X(ti)X(ti+1)...X(tj)] respectively. Taking the location Θ
into consideration, (3) can be rewritten as∫

PXn+1,Θn+1|X1:n
(xn+1, θn+1|x1:n)dθn+1 (4)

and based on the conditional independent property of X
given θ and the conditional probabilistic factorization, the
integrand in (4) can be further written as

PXn+1,Θn+1|X1:n
(xn+1, θn+1|x1:n)

=PXn+1|Θn+1
(xn+1|θn+1)PΘn+1|X1:n

(θn+1|x1:n) (5)

While the former term PXn+1|Θn+1
(xn+1|θn+1) on the

right hand side of (5) follows the associating rules in
Section 3.2 which is known in advance, the later term
PΘn+1|X1:n

(θn+1|x1:n) turns out to be the knowledge to
learn, making the prediction of association vector into the
prediction of the unobserved location.

To perform estimation and prediction, based on the
Markovian assumption, there is a recurrence relation be-

(a) Possible positioning basing
on information from connected
APs

(b) Possible positioning with ad-
ditional information from discon-
nected APs

Figure 3. Illustration of inferring location from association vector. In case
3(a), with considering connected APs, the enclosed area that the vehicle
possibly locates is the intersection of the coverage area of the connected
APs (yellow coloured). In case 3(b), in addition to the connected APs,
some of the disconnected APs also provide extra information about the
possible location.

tween the posterior belief, PΘn|X1:n
(θn|x1:n), and the prior

belief, PΘn|X1:n−1
(θn|x1:n−1), satisfying

PΘn|X1:n−1
(θn|x1:n−1)

=

∫
PΘn|Θn−1

(θn|θn−1)PΘn−1|X1:n−1
(θn−1|x1:n−1)dθn−1

(6)

and

PΘn|X1:n
(θn|x1:n) =

PXn|Θn (xn|θn)PΘn|X1:n−1
(θn|x1:n−1)∫

PXn|Θn (xn|θn)PΘn|X1:n−1
(θn|x1:n−1)dθn

(7)

which forms the basis of the optimal Bayesian solution. For
a more general situation that the Θ’s exhibit higher order
Markovian property as shown in Figure 2, we can still apply
the recurrence (6) and (7), with only replacing Θ’s by

Yn = [ΘnΘn−1...Θn−l] (8)

where l is the order of the Markovian property. It is easily
seen that Y ’s forms a Markov chain, and the conditional
independence property of X given Y still holds.

Based on this framework, we are now going to describe
the detail implementation about how to obtain the posterior
belief, (7), and how to make prediction, (6), under non-
stationary vehicular data.

4.2. Posterior Belief of the Location

Though it is supposed to update the posterior belief
with (7), based on Section 3.2, the information about the
location at one time instant is uniquely contained in the
corresponding association vector and is derived as follows.
For APs with state 1, the possible location would only lie
inside the intersection of their coverage area, as shown in
Figure 3a. For APs with state 0, the possible location would
lie outside their coverage area, or inside their coverage
area but with farther distance from the center, comparing
to APs with state 1. Accordingly, the possible location
of a particular vehicle would narrow down if there exists
overlapping between the intersection and the coverage area
of disconnected APs, as shown in Figure 3b.



Figure 4. Illustration of utilizing Monte Carlo method for obtaining a set of
points for representing the area of possible location and making prediction
accordingly. For randomly spread points, we retain the ones in the yellow
coloured area only for representing the possible location. Based on these
points, we may estimate the moving velocity accordingly, and make use of
it to predict the future location with (10). The red and blue dashed lines
represent two different possible directions, leading to different locations.

In this way, we can graphically enclose an area in-
dicating the possible location for each of the observed
association vectors. However, these areas are generally ir-
regularly shaped, representative descriptions are generally
not available. Consequently, we resort to the Monte Carlo
method for finding sets of points as the representations of the
areas, as shown in Figure 4. One simple way of achieving
this is to randomly spread points around the centroid of the
connected APs within region of size the same as a coverage
area and retain points satisfying the restriction derived from
the association vector as in 3b.

4.3. Future Location Prediction

With the posterior belief of the locations, we are now
able to predict the future location with (6) and (8). In com-
mon usage of the Bayes filtering, the transition probability
(PΘn|Θn−1

(θn|θn−1) or PYn|Yn−1
(yn|yn−1)) is prerequisite

and can be estimated from a batch of data in advance.
However, the mentioned non-stationary issue makes it un-
likely. In dealing with the non-stationarity, different proce-
dures should be adopted for the different causes [30], and
for prediction, the varying velocity of the vehicle and the
variable time duration makes θ non-stationary. To illustrate,
following the law of motion,

θ(tn+1) = θ(tn) +

∫ tn+1

tn

θ′(s)ds (9)

where θ′(s) is the first order derivative of θ, representing the
velocity. If we further approximate the movement within a
short period of time with a constant velocity, then

θ(tn+1) ≈ θ(tn) + v · (tn+1 − tn) (10)

where v denotes the approximated velocity. While the dura-
tion is in our control (to predict different ”when”) with no
fixed length, the v which is affected by multiple exogenous
factors as mentioned previously is exact the reason for θ
being non-stationary, and estimation of v with considering
the non-stationary issue is thus what needed.

Figure 5. Demonstration of the predicted results. The figure shows a
example of AP prediction with the ordering of time corresponding to the
frames arranged from left to right. The ellipses in the figure indicate the
coverage area of APs. The blue colored ones means that we predict the
AP to be connected and it is indeed connected, the green ones means that
we predict the AP to be disconnected but it is actually connected, and the
red ones means that we predict the AP to be connected but it is actually
disconnected. The orange marker in the figure represents the predicted
location of the car.

Optimal velocity. Assuming a fixed relation between the
velocity and the locations, i.e., vi = v(θ̄i, θ̄i−1, ...), a func-
tion of the past locations, then the optimal v(.) can be found
with

v∗ = arg minv(.)

n∑
i=1

λn−il(θ̄i, θ̂i) (11)

where l(., .) denotes the loss function and

θ̂i = θ̄i−1 + v(θ̄i−1, ...) · (ti − ti−1) (12)

denotes the predicted θi. What behind (11) is that we wish
to find an optimal v(.) that minimizes the induced losses of
all observed time instances. Here, λ ∈ (0, 1) represents the
forgetting factor for dealing with the non-stationary issue.

Remark. As we have shown approximating the movement
with constant velocity, higher order derivative can actually
be introduced for more accurate approximation.

4.4. Predicting Future Location and Association
Vector

With the estimated velocity and θ̃’s, the simulated sets
of possible location, we are able to perform (6) now. Instead
of yielding an analytic distribution function, the prior belief
is the same presented with a set of points as what we’ve
done for inferring the possible location. For each of the
θ

(i)
n ∈ θ̃n, a simulated set of predicting location for Θn+1

could be obtained from

{θ : θ = θ(i)
n + vn(tn+1 − tn), ∀θ(i)

n ∈ θ̃n} (13)

where vn is the estimated optimal velocity. With (13), we
can transform each of the θ in the predicted location set
into the association vector easily according to Section 3.2,
yielding a set of possible association vectors. The final
decision is then the prediction with the highest votes.



Figure 6. Real world region of consideration and randomized deployment
of APs.

5. NUMERICAL VERIFICATIONS

5.1. Vehicular Dataset

To examine whether learning mechanisms can fit our
purpose, testing with real dataset is needed. Though there
is no perfect dataset available, the big data from large-scale
taxi service or Uber appears to meet our initial need. We
are lucky to obtain recent big data of Beijing taxi data to
develop the prediction mechanism, which is the same dataset
used in [12] and [24]. Such taxi data consists of 12,000 taxis
operating over two months with 24-hour GPS trace for each
taxi. After data cleaning and aligning with map, we can
therefore construct a trajectory via GPS coordinate records
from each taxi, to represent typical vehicular movement data
in urban area. Each record contains the ID of the car, the
latitude, the longitude and the recording time with resolution
of every several seconds, which is of the form

ID time latitude longitude
204806 20121101123159 116.5541328 40.02253789

In the numerical evaluations of this paper, we fo-
cus on the region of interest ranging from 116.435◦ to
116.505◦ (latitude) and 39.928◦ to 40.061◦ (longitude),
roughly 7.8×6.6 km2. Within this region, there are 3,575
APs in total with λAP = 69.44, and the GPS records are
transformed into association vectors described in Section 3.2
as the representation form of (2).

5.2. Prediction Demonstration

In Figure 5, a series of frames demonstrating the consec-
utive prediction results is presented. Under the Bayes filter
framework, online prediction is feasible. Although some of
the time instances yield perfect prediction but some do not,
the deviation from the centroid of the true connected APs
to the predicted ones is actually not significant at all.

5.3. Performance Comparison

5.3.1. Benchmark Performance. Although it is less suit-
able applying classification techniques to AP prediction,
we still try with the naı̈ve Bayesian approach, sug-
gesting the benchmark mechanism and performance. As

the details of the naı̈ve Bayes classification could be
found in [23], here the targets to predict are the APs,
X(k)(ti+1) for k = 1, ..., d, and the corresponding predic-
tive features are the three most recent association vectors,
X(ti), X(ti−1), X(ti−2). With this approach, a prediction
is independently made for each AP and any correlations
among groups of APs that frequently provide connectivity to
a vehicle together due to close proximities are ignored. This
deteriorates the performance, and thus, a slight improvement
based upon the raw prediction was made by adding a
second decision layer. On occasions where only two APs
were predicted, a search was made in the training data to
determine the most frequently occurring set of three APs
of which the predicted APs were a subset. These APs were
then chosen as the output instead of the raw predictions.
The accuracy is expressed as a percentage of the number of
times correct AP predictions are made and is summarized in
Table 1. As we can see, the naı̈ve Bayesian approach can not
supply correct probability when a vehicle can only connect
to a single AP. Though the situation of association with a
single AP is not happening frequently, it is still desirable to
make accurate enough prediction in this situation.

5.3.2. Proposed Method Performance. Based on the
framework of recursive Bayesian estimation, we proposed a
method to approximate the velocity that controls the hidden
location by optimizing the loss. The performance of the
method is shown in Table 2. With the loss function in
(11) being set to (θ̄i − θ̂i)2, the well known recursive least
square (RLS) [17] algorithm can be applied for solving (11)
efficiently. Comparing to the naı̈ve Bayes classification, the
proposed method is superior in not only the full connected
situation, but also in the other two as well, which means the
method is applicable even when λAP is of a low level. Such
performance well satisfies the need of AMM for ultra-low
latency networking in Section 2. Our results demonstrate (i)
limited possibility of falling back to cellular (i.e., no AP to
be correctly connected) (ii) since we use random deployment
of APs, there exists a non-trivial possibility in our numerical
that no AP is actually in communication range of a vehicle,
which can be easily corrected in practical deployment with
road map as a reference.

6. CONCLUDING REMARKS

In this paper, via big vehicular data, we examine the
naı̈ve Bayes approach as the benchmark, then a Bayes-filter-
based latent location tracking of a vehicle for predicting
the connected APs to achieve the ultra-low latency mobile
networking. Though this simple scenario is considered, it
can be extended to a more complicated SINR setting follow-
ing the same procedure of recursively performing posterior
belief estimation (7) and making prediction according to
(6). This research opens a new avenue for machine learning
and big data analytics for mobile networks. Further real-
time predictive techniques to effectively handle a substan-
tial member of vehicles and even scheduling AVs [24] or
techniques assisted by deep learning in the cloud definitely



Improved Naı̈ve Bayes classification

# of
connected

APs

# of correctly predicted APs

0 1 2 3

1 86.36% 13.63%

2 3.91% 27.90% 68.19%

3 1.25% 4.11% 11.80% 82.84%

TABLE 1. IMPROVED NAÏVE BAYES CLASSIFICATION

Method of Calculating Optimal Velocity

# of
connected

APs

# of correctly predicted APs

0 1 2 3

1 26.68% 73.32%

2 8.49% 13.68% 77.83%

3 1.25% 2.12% 2.74% 93.89%

TABLE 2. OPTIMAL VELOCITY ESTIMATION

merits further investigation. There are further efforts to
complete the design of AMM in heterogeneous networks,
such as clustering APs under anchor nodes, precise falling
back to cellular mechanism compatible with 3GPP stan-
dards, more mature error control in multi-path operation, and
precise network virtualization for ultra-low latency packets
and broadband multimedia traffic.
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